## Further mathematics

Higher level

## Paper 2

Friday 20 May 2016 (morning)

2 hours 30 minutes

## Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [150 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 14]

Consider the following weighted graph.

(a) Determine whether or not the graph is Eulerian.
(b) Determine whether or not the graph is Hamiltonian.
(c) Use Kruskal's algorithm to find a minimum weight spanning tree and state its weight.
(d) Deduce an upper bound for the total weight of a closed walk of minimum weight which visits every vertex.
(e) Explain how the result in part (b) can be used to find a different upper bound and state its value.
2. [Maximum mark: 17]
(a) Use l'Hôpital's rule to show that $\lim _{x \rightarrow \infty} \frac{x^{3}}{\mathrm{e}^{x}}=0$.

The random variable $X$ has probability density function given by

$$
f(x)=\left\{\begin{array}{c}
x \mathrm{e}^{-x}, \text { for } x \geq 0 \\
0, \text { otherwise }
\end{array}\right.
$$

(b) (i) Find $\mathrm{E}\left(X^{2}\right)$.
(ii) Show that $\operatorname{Var}(X)=2$.
(c) State the central limit theorem.

A sample of size 50 is taken from the distribution of $X$.
(d) Find the probability that the sample mean is less than 2.3 .
3. [Maximum mark: 15]

A circle $C$ passes through the point $(1,2)$ and has the line $3 x-y=5$ as the tangent at the point (3, 4).
(a) Find the coordinates of the centre of $C$ and its radius.
(b) Write down the equation of $C$.
(c) Find the coordinates of the second point on $C$ on the chord through $(1,2)$ parallel to the tangent at $(3,4)$.
4. [Maximum mark: 23]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y}$, where $y \neq 0$.
(a) Find the general solution of the differential equation, expressing your answer in the form $f(x, y)=c$, where $c$ is a constant.
(b) (i) Hence find the particular solution passing through the points $(1, \pm \sqrt{2})$.
(ii) Sketch the graph of your solution and name the type of curve represented.
(c) (i) Write down the particular solution passing through the points $(1, \pm 1)$.
(ii) Give a geometrical interpretation of this solution in relation to part (b).
(d) (i) Find the general solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y}+\frac{y}{x}$, where $x y \neq 0$.
(ii) Find the particular solution passing through the point $(1, \sqrt{2})$.
(iii) Sketch the particular solution.
(iv) The graph of the solution only contains points with $|x|>a$. Find the exact value of $a, a>0$.
5. [Maximum mark: 19]
(a) The sequence $\left\{u_{n}: n \in \mathbb{Z}^{+}\right\}$satisfies the recurrence relation $2 u_{n+2}-3 u_{n+1}+u_{n}=0$, where $u_{1}=1, u_{2}=2$.
(i) Find an expression for $u_{n}$ in terms of $n$.
(ii) Show that the sequence converges, stating the limiting value.
(b) The sequence $\left\{v_{n}: n \in \mathbb{Z}^{+}\right\}$satisfies the recurrence relation $2 v_{n+2}-3 v_{n+1}+v_{n}=1$, where $v_{1}=1, v_{2}=2$.
Without solving the recurrence relation prove that the sequence diverges.
(c) The sequence $\left\{w_{n}: n \in \mathbb{N}\right\}$ satisfies the recurrence relation $w_{n+2}-2 w_{n+1}+4 w_{n}=0$, where $w_{0}=0, w_{1}=2$.
(i) Find an expression for $w_{n}$ in terms of $n$.
(ii) Show that $w_{3 n}=0$ for all $n \in \mathbb{N}$.
6. [Maximum mark: 19]

Consider the set $J=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$ under the binary operation multiplication.
(a) Show that $J$ is closed.
(b) State the identity in $J$.
(c) Show that
(i) $1-\sqrt{2}$ has an inverse in $J$;
(ii) $2+4 \sqrt{2}$ has no inverse in $J$.
(d) Show that the subset, $G$, of elements of $J$ which have inverses, forms a group of infinite order.
(e) Consider $a+b \sqrt{2} \in G$, where $\operatorname{gcd}(a, b)=1$,
(i) Find the inverse of $a+b \sqrt{2}$.
(ii) Hence show that $a^{2}-2 b^{2}$ divides exactly into $a$ and $b$.
(iii) Deduce that $a^{2}-2 b^{2}= \pm 1$.
7. [Maximum mark: 19]

Consider the functions $f_{n}(x)=\sec ^{n}(x),|x|<\frac{\pi}{2}$ and $g_{n}(x)=f_{n}(x) \tan x$.
(a) Show that
(i) $\frac{\mathrm{d} f_{n}(x)}{\mathrm{d} x}=n g_{n}(x)$;
(ii) $\frac{\mathrm{d} g_{n}(x)}{\mathrm{d} x}=(n+1) f_{n+2}(x)-n f_{n}(x)$.
(b) (i) Use these results to show that the Maclaurin series for the function $f_{5}(x)$ up to and including the term in $x^{4}$ is $1+\frac{5}{2} x^{2}+\frac{85}{24} x^{4}$.
(ii) By considering the general form of its higher derivatives explain briefly why all coefficients in the Maclaurin series for the function $f_{5}(x)$ are either positive or zero.
(iii) Hence show that $\sec ^{5}(0.1)>1.02535$.
8. [Maximum mark: 24]

The set of all permutations of the list of the integers $1,2,3 \ldots n$ is a group, $S_{n}$, under the operation of composition of permutations.
(a) (i) Show that the order of $S_{n}$ is $n!$;
(ii) List the 6 elements of $S_{3}$ in cycle form;
(iii) Show that $S_{3}$ is not Abelian;
(iv) Deduce that $S_{n}$ is not Abelian for $n \geq 3$.
(b) Each element of $S_{4}$ can be represented by a $4 \times 4$ matrix. For example, the cycle (1 2344 ) is represented by the matrix
$\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$ acting on the column vector $\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$.
(i) Write down the matrices $\boldsymbol{M}_{1}, \boldsymbol{M}_{2}$ representing the permutations (12), (2 3), respectively;
(ii) Find $\boldsymbol{M}_{1} \boldsymbol{M}_{2}$ and state the permutation represented by this matrix;
(iii) Find $\operatorname{det}\left(\boldsymbol{M}_{1}\right), \operatorname{det}\left(\boldsymbol{M}_{2}\right)$ and deduce the value of $\operatorname{det}\left(\boldsymbol{M}_{1} \boldsymbol{M}_{2}\right)$.
(c) (i) Use mathematical induction to prove that

$$
(1 n)(1 n-1)(1 n-2) \ldots(12)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array} . . n\right) n \in \mathbb{Z}^{+}, n>1 .
$$

(ii) Deduce that every permutation can be written as a product of cycles of length 2 .

